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the adiabatic bond charge model
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Department of Physics, Exeter University, Exeter EX4 4QL, UK
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Abstract. We have used the adiabatic bond charge model within a repeated slab scheme to
study lattice dynamics on the GaAs(110) surface. The results provide a more detailed analysis of
the surface phonon modes than is available from existing theoretical and experimental techniques.

1. Introduction

The clean cleaved III–V(110) surfaces have in general been the subject of intensive research
over the past thirty years. While most experimental and theoretical studies have been
devoted to determination of surface atomic geometry and surface electronic states, only
in the recent past have surface vibrational properties been investigated. The GaAs(110)
surface is the most commonly studied, and therefore the prototypical cleaved semiconductor
surface. Low-energy electron diffraction analysis [1] and medium-energy ion-scattering
experiments [2] have determined the relaxed atomic geometry of GaAs(110). Angle-
resolved photoemission studies [3] have mapped out occupied surface electronic states
along symmetry directions on the surface Brillouin zone. Total energy pseudopotential
calculations [4–6] have confirmed the experimental results for the equilibrium geometry
and for the occupied surface electronic states. Recently, quasi-particle calculations have
been made [7, 8], which indicate that the band gap of GaAs is free from any surface
electronic states, in agreement with the conclusion reached from a combination of direct
and inverse photoemission measurements [9]. Low-energy (i.e. acoustic) surface phonon
modes on GaAs(110) were detected with inelastic He-atom-scattering experiments [10].
High-resolution electron energy-loss spectroscopy (HREELS) has been used to study both
low-energy and high-energy surface phonon modes [11–18].

The experimental studies, using inelastic He-atom scattering and HREELS as mentioned
above, do not provide an unambiguously clear picture of atomic vibrations on the GaAs(110)
surface. Both techniques are unable to detect atomic displacements which are strictly
horizontal (such as the so-called A′′ modes along0–X′—see later). Moreover, while higher
energies are not accessible for He-atom scattering, different HREELS studies have placed
surface vibrational energies at somewhat different positions. In particular, the number of
surface acoustic modes and their energy positions are reported to be different by different
groups.

On the theoretical side, the phenomenological bond charge model (BCM) [19, 20], a
tight-binding model [21–23], andab initio pseudopotential schemes [24–26] have been used
to study surface vibrations on GaAs(110). However, there is a lack of detailed understanding
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1346 H M Tütüncü and G P Srivastava

of various surface modes and their characters (i.e. polarization and localization). In
particular,ab initio calculations are computationally very demanding and have thus mainly
been made for a selected number of high-symmetry points in the surface Brillouin zone
[24–26]. Only one group [25] has presentedab initio results for surface phonon dispersion
along the azimuths0–X and 0–X′ (see figure 1). In their work Fritschet al [25] used a
linear response approach, based on the density functional perturbative scheme, to achieve
this. Santiniet al [19, 20] have studied surface phonon dispersion curves on GaAs(110) and
Ge(111) 2×1 using the adiabatic BCM. They used six adjustable force-constant parameters
and expressed an appropriate new equilibrium condition for the GaAs(110) surface, and
obtained phonon frequencies in reasonably good agreement with data on He inelastic
scattering up to 15 meV energy. However, a wealth of HREELS data have recently become
available [17, 18] along three symmetry directions up to phonon energies of 40 meV. It is
thus interesting to calculate surface phonon dispersion and mode polarization characteristics
along various symmetry directions over the entire frequency range using a single theoretical
approach such as the BCM. A comparison of the BCM results with those obtained from
ab initio calculations and HREELS measurements would establish the BCM as a reliable
theoretical tool for such studies.

Figure 1. Schematic (a) side and (b) top views of the relaxed surface geometry of the GaAs(110)
surface. The surface Brillouin zone is shown as (c).

In this paper we present a detailed account of phonon frequencies and polarization
of atomic vibration along various symmetry directions in the Brillouin zone for the
GaAs(110) surface by applying the adiabatic BCM to the recently determined relaxed
atomic geometry [6]. In particular, we discuss the effect of surface relaxation on surface
phonon frequencies, and compare our findings with the up-to-date experimental andab
initio theoretical investigations. We find that while the displacement patterns remain largely
unchanged, some surface frequencies shift upwards by up to 3 meV when the relaxation of
ionic and bond charge (BC) positions is considered in our calculation. Our results for the
relaxed surface geometry are in very good overall agreement with experimental data and
the ab initio work of Fritschet al [25] over the entire frequency range. We also agree with
Santiniet al that the ion–BC force-constant matrix plays an important role in the study of
surface dynamics, while the surface ion–ion force-constant matrix is nearly the same as the
bulk force-constant matrix.



Phonon dispersion on a GaAs(110) surface 1347

2. Theory

The phenomenological adiabatic BCM was originally devised by Weber to study the lattice
dynamics of tetrahedrally coordinated semiconductors [27–29]. This model produces bulk
phonon dispersion curves which are in good agreement with experimental neutron scattering
data, for both homopolar and heteropolar semiconductors. Also, in a previous study
it was found [30] that this model predicts dispersions of eigenvalues and eigenvectors
of lattice vibrations in bulk semiconductors which are in good agreement withab initio
calculations. The number of adjustable parameters is four for homopolar semiconductors
(such as Si) and six for heteropolar semiconductors (such as GaAs). The method has been
successfully applied in studying vibrational modes of semiconductor surfaces [19, 20, 31]
and fullerenes [32].

In the BCM for tetrahedrally bonded semiconductors, the valence electron charge density
distribution is represented by massless bond charges (BCs), endowed with translational
degrees of freedom. The BCs are displaced towards anions, dividing a bond in the ratio
3:5 in A3B5-type semiconductors. The BCs are allowed to move adiabatically, following
the ionic displacements so as to keep in equilibrium with the instantaneous positions of the
ions. In this paper, we have used the results of a recentab initio pseudopotential calculation
for the atomic geometry of the GaAs(110) surface [6]. As seen from figure 1, the top-layer
Ga atoms move towards the bulk while the top-layer As atoms move away from the bulk.
The positions of the dangling BCs are decided according to the maximum valence electron
density [6]. We consider an artificially periodic slab geometry, as used in total energy and
band-structure calculations [6]. In the present case a supercell is considered to contain
eleven (110) layers of GaAs and a vacuum region equivalent to nine layers of GaAs. In
the plane normal to [110] the unit cell is considered to have a 1× 1 structure. Thus a
relaxed unit cell contains 22 ions and 44 BCs. Our choice of the slab size is somewhat
better than that considered in recentab initio works [24–26] and is adequate for examining
atomic vibrations of up to top three surface layers. It is appropriate at this point to mention
that in their calculations Santiniet al modelled the surface as a semi-infinite crystal in the
form of a slab of 23 layers rather than in the form of a repeated slab as considered in this
work.

We have examined the dependence of mode frequencies on the thickness of the vacuum
layer in the unit cell. We find that the lowest surface frequency at theM point in the surface
Brillouin zone (see figures 1 and 2) turns out to be 6.74, 7.15, 7.11, 7.12, 7.12 and 7.12
meV when the vacuum region is taken to be equivalent to 1, 2, 4, 6, 9 and 11 atomic layers,
respectively. We thus find that our choice of nine layers for the vacuum region is totally
adequate.

For the application of the BCM we have considered three types of interaction.

(i) In order to calculate long-range Coulomb interactions, we assume that the two ionic
charges are equal,Z1 = Z2 = −2Z, whereZ is the bond charge. The Coulomb matrix is
of size 198× 198, corresponding to a total of 66 charged particles in the relaxed unit cell:

CC
αβ=x,y,z(κκ ′|q) = e2

Va

Z2

ε

[
4CR −2CT

−2C+
T CS

]
where CR, CT , C+

T , CS denote the ion–ion, ion–BC, BC–ion and BC–BC matrices,
respectively. ε is the dielectric constant andVa is the volume of the unit cell (20 times
the bulk unit-cell volume).Z2/ε is known as the force-constant parameter for Coulomb
interaction and is taken as its bulk value [29]. These matrices are calculated by a Ewald
technique [33]. Using the translational symmetry of the Coulomb force constants [33],



1348 H M Tütüncü and G P Srivastava

Figure 2. The dispersion of surface phonon modes on the GaAs(110) surface. The calculated
results for the relaxed surface geometry are shown by thick solid curves. The results for
the ideally terminated surface geometry are shown by dashed curves. Modes with complex
displacement patterns with large amplitude at the outermost surface atoms are shown by thin
curves. Also shown are experimental results taken from: (a) He-atom-scattering data (open and
closed triangles [10, 20], and open diamonds [16]); (b) HREELS data (open circles [17, 18]).

it can be shown that the self-term ion–ion Coulomb force-constant matrices are non-zero
because of broken bulk symmetry in the presence of the surface. In addition, we find that
in the surface region the ion–ion and BC–BC self-term matrices are very sensitive to atomic
geometry.

(ii) Let φ1 andφ2 denote the two ion–BC central potentials andφi−i show the nearest-
neighbour interaction potential of ions. BCs also interact directly with each other via
potentialsψ1 and ψ2, depending on whether they are centred around ion 1 or ion 2.
Following Rustagi and Weber [29] we assumeψ′

1 = ψ′
2 = 0. In order to get the first

derivative ofφ1, φ2, andφi−i , we have imposed the equilibrium condition for the unit cell
described above. The second derivatives of potentials do not appear for this equilibrium
condition and thus we take them as their bulk values. This choice is also in agreement
with the observation [1, 5, 6] that at and near the surface the relative ion–BC, ion–ion
and BC–BC distances are nearly the same as the bulk values (the so-called bond-conserved
surface relaxation model). The central-force-constant matrix connecting two particles can
be calculated as [33]

8αβ(`κ; `′κ ′) = xαxβ

r2

[
φ′′

κκ ′(r) − 1

r
φ′

κκ ′(r)

]
+ δαβ

r
φ′

κκ ′(r) (1)

wherer denotes magnitude of the relative distance between particleκ in the`th unit cell, and
κ ′ in the `′th unit cell, andφκκ ′ represents inter-particle central potential (i.e.φ1, φ2, φi−i ,
ψ1 or ψ2 as the case may be). As seen from this equation, the central-force-constant matrix
connecting two particles also depends on the components of the relative distance between
particles (i.e.xα, xβ). For this reason, the central-force-constant matrices connecting top-
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layer atoms and BCs are very different from the bulk values, indicating clearly that a careful
consideration of the ion–BC force-constant matrix is very important for a study of surface
dynamics.

(iii) We have taken bond-bending forces into account by using the Keating bond-bending
potential [34]. Any two BCsi, j , centred around a common ionσ , interact with each other
and with the ion via a Keating potential

V
(σ)
bb = 1

2
Bσ (Xσ i · Xσj + a2

σ )/4a2
σ (2)

whereXσ i , Xσj are the distance vectors connecting ionsσ (σ = 1, 2) to BCsi, j , Bσ are
force constants, anda2

σ is the equilibrium value of|Xσ i .Xσj |. Since this potential depends
only on scalar products, the rotational invariance condition is fulfilled. The elements of the
short-range Keating ion–BC matrices connecting a top-layer As atom and its neighbouring
BCs become very much bigger than the corresponding bulk values because the angles
between neighbouring BCs change considerably on the relaxed surface. This is the second
reason for which a proper consideration of the surface ion–BC interaction is very important.
In addition, the Keating force-constant matrices connecting top-layer Ga atoms and BCs are
also different from bulk values because on the relaxed surface Ga atoms are surrounded by
three BCs instead of four.

Short-range force-constant matrices are divided into the ion–ion force-constant matrix
R, the ion–BC force-constant matrixT , and the BC–BC force-constant matrixS. In the
matrix notation, the dynamical equations for the ions and BCs are

Mω2U =
[
R + 4Z2

ε
CR

]
U +

[
T − 2Z2

ε
CT

]
W (3)

mω2W =
[
T + − 2Z2

ε
C+

T

]
U +

[
S + Z2

ε
CS

]
W (4)

whereM andm are the ion and BC mass matrices respectively, andU andW are column
matrices inq-space (wave-vector space) denoting, respectively, the displacements of ions
and BCs in the unit cell. In the adiabatic approximation (m = 0), we have

W = −
[
S + Z2

ε
CS

]−1 [
T + − 2Z2

ε
C+

T

]
U . (5)

With this we get

Mω2U = CtotalU (6)

whereCtotal is the effective ion–ionC-type matrix, which can be written as

Ctotal =
[
R + 4Z2

ε
CR

]
−

[
T − 2Z2

ε
CT

] [
S + Z2

ε
CS

]−1 [
T + − 2Z2

ε
C+

T

]
. (7)

Note thatCtotal is a square matrix of order 3n wheren is the number of atoms in the unit
cell. The branches of the dispersion relationsω2

j (q) with j = 1, 2, . . . , 3n are the solutions
of the secular equation[

1

M
Ctotal(q) − ω2I

]
U (q) = 0. (8)

Atomic displacements can be expressed in terms of the eigenvectors of the dynamical
eigenvalue problem. For theC-type dynamical matrix, the actual displacement of the atom
`κ in the modeqj is given by [33]

u(`κ|qj) = 1√
Mκ

U (κ|qj)exp{i [q · x(`κ) − ωt ]} (9)
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wherex(`κ) ≡ x(`) + x(κ) is the equilibrium position vector of theκth atom with mass
Mκ in the `th unit cell.

3. Results

In figure 2 we have plotted the projected bulk GaAs phonon energies (hatched regions) and
surface phonon energies along various symmetry directions in the irreducible part of the
surface Brillouin zone. The results for the relaxed GaAs(110) surface are shown by thick
lines. Experimental results, obtained from He-atom scattering and HREELS measurements,
are shown as explained in the figure caption.

First of all, it is interesting to note that there are a few ‘stomach’ gaps in the projected
bulk phonon band structure. These arise due to differences in the dispersions of transverse
and longitudinal phonons for acoustic and optical vibrations in bulk GaAs along [110].
No propagating bulk states can be found in these gap regions. In general, there is a broad
stomach gap, at around 15 meV, alongX−M−X′ in the surface Brillouin zone. In particular,
the gap regions at various symmetry points are as follows: 13.1–18.2 meV, 26.3–28.8 meV,
and 28.8–30.3 meV atX; 14.1–22.2 meV, 24.4–25.0 meV, and 28.9–30.0 meV atM; and
12.0–15.6 meV and 24.5–28.4 meV atX′. Any solutions found in these regions will be true
surface states.

In figure 2 we have shown the dispersion of phonon modes on the relaxed surface as
calculated in this work. We have considered most of the states corresponding to vibrations
of atoms in the top three surface layers. In the discussion below we will mainly consider
modes with vibrations of atoms in the top two layers, but occasionally with vibrations
including the third layer.

Table 1. Calculated surface phonon frequencies for GaAs(110) at the0 point and their
comparison with experiments and available theoretical calculations. The modes have been
classified according to the irreducible representations A′ and A′′ of the point group symmetry of
the surface unit cell. Only some surface modes are shown, and others can be found in figure 5.
The results in parentheses indicate complex displacement patterns with large amplitude at the
outermost surface atoms. Frequencies are given in meV.

Reference A′′ A′

Present results 11.96 28.68 32.18 10.99 (15.77) 20.88 22.80 30.46 35.80
ab initio [26] (8.6) 31.1 31.7 (11.1) 14.6 (17.7) 23.2 35.8
ab initio [25] 30.0 32.2 16.5 23.7 30.9 34.6
ab initio [24] 11.0 13.3 27.3 34.1
Bond charge [20] 9.6
Tight binding [22] 9.8
Tight binding [21] 10.7
He scattering [10] 10.0
HREELS [14] 17.5 23.2 35.0
HREELS [17] 10.5 16.5 21.1 35.8

Before proceeding with our discussion we remark that HREELS measurements have
typical errors of±1 meV and that theab initio results presented by three different groups
may differ by up to 2 meV (except for at one particular frequency for which the various
results differ by more than 4 meV—see table 1).
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3.1. The effect of surface relaxation on vibrations

For the unrelaxed surface we consider the ideally terminated bulk positions for the Ga and
As ions, and place bond charges of magnitudeZ/2 at their bulk positions along each of the
dangling bonds from Ga and As atoms. This results in 22 ions and 46 BCs (42 of magnitude
Z and 4 of magnitudeZ/2) within the unrelaxed unit cell. For the relaxed surface geometry
we consider the Ga dangling orbital to contain no bond charge and the As dangling orbital
to contain a BC of magnitudeZ, in accordance with the well established view [4–6].

Figure 3. The density of phonon states on GaAs(110).
The solid curve was obtained from the (110) slab
supercell calculation with the relaxed surface geometry,
while the dotted curve shows the density of states
with the ideally terminated surface geometry. Some
important differences are highlighted by arrows and
discussed in the text.

Figure 4. The density of phonon states for the
slab supercell with the relaxed surface geometry (solid
curve) is compared with the bulk density of states
(dotted curve). Important surface features are indicated
as peaks S1 to S5. The peak S1 is related to the
Rayleigh wave, and the peak S5 corresponds to the
Fuchs–Kliewer phonon branch.

We make a few observations regarding the importance of atomic relaxation on surface
phonon modes. Firstly, there are a few relaxation-derived surface states, i.e. such states are
not observed with the unrelaxed geometry. Secondly, some of the states identified for the
unrelaxed geometry are found to change upwards in energy by up to 3 meV upon relaxation
of the surface. However, amplitudes of atomic vibrations do not change by more than 20%
when surface relaxation is considered. In figure 2 we have shown, with dashed curves, two
specific examples of true surface states in the acoustic range for the unrelaxed geometry
along theX′–M direction. The lower mode is a Rayleigh mode and is shifted in energy
by about 2 meV from the same mode for the relaxed geometry. The upper mode shows a
dispersion different to that of its counterpart upon relaxation: whereas atX′ there is very
little difference between the unrelaxed surface frequency and the relaxed surface frequency,
at M the unrelaxed surface frequency lies 2 meV below the relaxed surface frequency. It
should be mentioned here that we can expect surface frequencies to alter by up to 1 meV
upon consideration of reasonable changes in surface atomic geometry and dangling position.

In figure 3 we have plotted the phonon density of states of the repeated slab geometry
with the ideally terminated surface geometry (dashed curve) and with the relaxed surface
geometry (solid curve). It is evident that the surface relaxation gives rise to significant
changes in the density of states. In particular, we identify important changes in three energy
ranges. Firstly, in the lower part of the acoustic range at around 5 meV there is a small
peak (P1) in the density of states for the unrelaxed geometry, which is washed away when
the relaxed geometry is considered. Secondly, in the LA–TA gap region there develops a
strong peak (P2) for the relaxed geometry. Furthermore, for the relaxed geometry there is a
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small peak (P3) in the gap between the long-wavelength LO and TO bulk frequencies which
is not seen for the unrelaxed geometry.

Table 2. Calculated surface phonon frequencies (in meV) for some modes on GaAs(110)
at X′. The representations A′ and A′′ represent the sagittal (SG) and shear horizontal (SH)
polarizations, respectively. Our results are compared with available experimental data. RW
indicates the Rayleigh mode, and A1 is the zone-boundary acoustic mode discussed in the
experimental literature and referred to in the text.

Reference A′′ A′

Present results 6.82 28.94 6.40 7.69 10.46 12.96 25.94 27.86 29.76 35.11
ab initio [25] 6.13 5.78 7.58 35.70
He scattering [16] 5.6 7.3
HREELS [17, 18] 5.7 7.2 10.5 35.8

RW RW A1

Table 3. Calculated surface phonon frequencies (in meV) for some modes on GaAs(110) at
X. The sums of the squares of the sagittal (SG) and shear horizontal (SH) components of the
modes are given in square brackets. Our results are compared with available theoretical and
experimental results. The results shown in parentheses describe complex displacement patterns
with large amplitude at the topmost surface atoms. RW indicates the Rayleigh mode, and A1 and
A2 are the zone-boundary acoustic modes discussed in the experimental literature and referred
to in the text.

Reference Modes atX

Present results 8.73 9.51 9.95 13.45 13.86 21.01 28.22 29.28 33.23[∑
U2

SG

]
0.98 0.86 0.70 0.47 0.48 0.90 0.90 0.70 0.40[∑

U2
SH

]
0.02 0.14 0.30 0.53 0.52 0.10 0.10 0.30 0.60

ab initio [26] 8.7 8.9 11.1 13.0 14.2 22.7 28.2 32.0 35.5[∑
U2

SG

]
0.68 0.70 0.51 0.50 0.51 0.93 0.79 0.89 0.42[∑

U2
SH

]
0.32 0.30 0.49 0.50 0.49 0.07 0.21 0.11 0.58

ab initio [25] 8.6 8.9 10.0 13.0 14.5 27.4 34.4

ab initio [24] 4.4 8.8 11.0 13.6 22.3 30.0 33.5

Bond charge [20] 7.6 9.5 13.3

HREELS [17, 18] 8.6 10.5 14.8 21. 5 34.8
(RW) (A1) (A2)

3.2. The surface vibrational spectrum

As seen from figure 2, our results for the relaxed surface geometry are in very good overall
agreement with experimental measurements except for in a few cases as noted below. A
detailed comparison of our results with experimental and recentab initio results at the0, X
andX′ points is presented in tables 1–3. Also given in tables 1 and 2 are the results from
tight-binding studies [21, 22] and the BCM work of Santiniet al [19, 20].

In particular, our theoretically obtained dispersion of the Rayleigh mode along0–X and
0–X′ at the bottom edge of the projected bulk acoustic range maps out the experimentally
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observed result very well. We also find a rather flat band at around 10 meV along both
of these azimuths, in agreement with experiment. There is also good agreement between
theory and experiment for the state near 13 meV at around theX point in the0–X direction.
However, we predict a few modes which have not been observed experimentally for the
reason explained in the next section.

In the recent HREELS measurements Nienhaus and Mönch [17, 18] have detected a
rather flat surface phonon band along both0–X and 0–X′, lying in the energy range 34.8–
35.8 meV. This is the long-wavelength optical surface or Fuchs–Kliewer phonon with a
frequency of 35.8 meV at0. Noting that the experimental measurements and theoretical
estimates have error margins of 1 meV, this band can be said to nearly coincide with the
top of the bulk GaAs phonon frequency spectrum at 35.2 meV. In our work we find, as
shown in figure 2 and tables 1–3, that the Fuchs–Kliewer (FK) phonon branch lies in the
bulk TO(0)–LO(0) gap range (33.6–36.4 meV). This is what is expected, as we now show.
The frequency of the Fuchs–Kliewer phonon is given by the expression [35]

ωFK =
√

ε(0) + 1

ε(∞) + 1
ωT O (10)

whereε(0) andε(∞) are the static and high-frequency dielectric constants of the substrate
material. The Lyddane–Sachs–Teller relation between the TO(0) and LO(0) frequencies is

ω2
LO/ω2

T O = ε(0)/ε(∞). (11)

As ε(0) > ε(∞), from the above two equations it is easy to establish that the Fuchs–Kliewer
frequency lies between the TO(0) and LO(0) frequencies, i.e.

ωT O < ωFK < ωLO. (12)

Therefore, we expect our prediction of the FK phonon frequency, and its dispersion along
the various symmetry directions, to be correct.

The density of phonon modes from our slab supercell calculation is shown in figure 4.
For comparison we have also shown the phonon density of states for bulk GaAs. Atomic
vibrations on the GaAs(110) surface lead to new peaks in the phonon density of states.
These are labelled S1 to S5 in the figure. There are a few small intensity peaks, indicated
by S4, which lie in the energy range 20–29 meV and are resonant with the bulk density
of states. The peak S1 at around 7 meV is due to the Rayleigh waves, S2 is a peak due
to resonant states in the range of the so-called A1 mode, S3 at around 16 meV is due
to localized surface states in the stomach gap, and S5 at around 35 meV is due to the
highest-lying true and resonant surface states forming the Fuchs–Kliewer branch.

3.3. Polarization and localization of surface modes

In general, the vibrational modes at the centre of the surface Brillouin zone (0), as well
as along0–X′, of the III–V(110) surface can be classified according to the irreducible
representations of the point group symmetry Cs (or C1h or m) of the surface unit cell.
Accordingly [36], atomic vibrations along [1̄10], i.e. along the III–V zigzag chain direction,
are represented as A′′ modes, and vibrations perpendicular to the chain direction are
represented as A′. Such a clear classification is not possible along the symmetry directions
0–X and0–M in the surface Brillouin zone. Along these directions modes show a mixture of
shear horizontal and sagittal-plane (defined by the direction of the two-dimensional phonon
wavevector and the surface-normal direction) polarizations.

In figure 2 we have plotted the surface phonon spectrum corresponding to atomic
vibrations in the top three layers of the slab. As we said earlier, in this section we will
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describe the energies and polarizations of the modes for which vibrational amplitudes are
largest for the first-layer and second-layer surface atoms. Consideration of atomic vibrations
in the top two layers of the slab is equivalent to solving a dynamical problem with four
atoms per unit cell. This consideration leads to 12 vibrational modes for a given surface
phonon wave vector, with the lowest three being acoustic in nature.

3.3.1. At the0-point. At the 0 point we have classified 4 of the 12 modes as A′′ modes,
and 8 as A′ modes. The displacement patterns of these modes are presented in figure 5.

The lowest surface frequency, which is at 4.55 meV, is an acoustic mode with all the
four surface atoms (in the top and second layers) vibrating in the A′′ mode. The second
acoustic surface frequency at 6.00 meV corresponds to the A′ mode of vibration of the
four atoms along [00̄1]. The highest acoustic surface frequency at0 lies at 9.02 meV and
corresponds to an A′ mode of vibration along [̄1 1̄0].

The lowest surface optical frequency at 10.99 meV is of the A′ mode and corresponds
to the top and second layers vibrating against each other. This mode can also be described
as a rotational mode of the GaAs chain on the surface, in agreement with the tight-binding
calculation by Wang and Duke [21] who place it at 10.7 meV. Also, this mode agrees
very well with the recent pseudopotential calculation of Schmidtet al [26] who place it
at 11.1 meV. The frequency at 11.96 meV is of the A′′ mode and represents the optical
vibrational pattern between the top and second layers. At 20.88, 21.90 and 24.04 meV
we find complex vibrational patterns of the A′ representation involving atoms in the top
and second layers. These frequencies agree very well with the HREELS measurements of
a surface mode between 21 and 22 meV by Nienhaus and Mönch [17]. The A′ mode at
22.80 is due to opposing motions of cations and anions in both the top and second layers.
(Note that the above surface optical modes lie in the bulk acoustic range.) The frequency
at 28.68 meV corresponds to A′′-type modes involving top-layer Ga and As atoms. As
remarked earlier, these frequencies have not yet been observed experimentally. Vibrations
at 32.18 meV correspond to the A′′ representation involving the second-layer Ga and As
atoms (with a small contribution from top-layer atoms). Finally, at 35.80 meV we find a
complex mode of the A′ representation. This corresponds to the vibrations of top-layer Ga
and As atoms against each other and that of second-layer Ga and As atoms against each
other. The Ga atoms in the two layers vibrate fairly much in phase. Similarly the As atoms
in the two layers vibrate in phase. This displacement pattern corresponds to stretching of the
Ga–As bond, involving atoms in the first and second layers. For this mode there is also a
large amplitude of atomic vibrations in the third layer. Other calculations have predicted the
corresponding displacement pattern to be of a bond-stretching character between the first-
layer Ga and second-layer As atoms [25, 26], which is consistent with our finding. This
frequency agrees very well with the Fuchs–Kliewer phonon observed experimentally [17].

In table 1 we have listed some of the above frequencies and compared them (favourably)
with experiment and other theoretical calculations. In addition to the 12 modes discussed
above, we have calculated a few other modes. The mode at 15.77 meV is found to
correspond to a complex displacement pattern with large amplitude at the outermost surface
atoms. The mode at 30.46 meV exhibits a significant amplitude of vibrations in the third
layer.

3.3.2. Along the0–X′ direction. As mentioned earlier, surface vibrations along0–X′
can be classified according to the A′ and A′′ polarization representations. Some of the
frequencies atX′ are listed in table 2. In general our results agree well with the recentab
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Figure 5. Atomic displacement patterns of surface phonons at the0 point. Considering atomic
vibrations in the top and subsurface layers, we have 12 modes: four A′′ symmetry modes with
vibrations along [̄110], the Ga–As zigzag chain direction, and eight A′ symmetry modes with
vibrations perpendicular to the chain direction. The lowest acoustic mode is of A′′ symmetry,
while the other two acoustic modes are of A′ symmetry. The modes are enumerated in ascending
order of frequencies.
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initio calculations by Fritschet al [25], and experimental data obtained by He-scattering
[16] and HREELS [17, 18] techniques. In particular, in the bulk TA range we find four
modes. The modes at 6.4 and 7.69 meV have A′ character and can be compared with
similar modes at 5.78 and 7.58 meV in the work of Fritschet al. Both of these modes have
been measured using He scattering and HREELS (in the range 5.6–7.3 meV). The mode at
6.82 meV compares well with the mode at 6.13 in the work of Fritschet al, but cannot be
detected experimentally as it has A′′ character. We have also calculated a mode lying at
10.46 meV which has been measured by HREELS at 10.5 meV (and referred to as the A1

mode in the literature). This mode, however, has not been identified in the theoretical work
of Fritschet al. In the TA–LA gap we have identified a mode at 12.96 meV of A′ character
and this can be compared (favourably) with the mode at 13.44 meV in the work of Fritsch
et al. We also agree with Fritschet al in their observation that this mode results from
vibrations of the top-layer Ga atoms perpendicular to the zigzag chain direction. Finally,
the mode at 35.11 meV also has A′ character and belongs to the Fuchs–Kliewer phonon
branch lying above the projected bulk phonon spectrum. This can be compared with the
mode at 35.70 meV in the theoretical work of Fritschet al and at 35.8 meV in the HREELS
measurement. However, we find that this mode involves displacements of first-, second-
and third-layer atoms. The calculated dispersion of the Rayleigh mode along0–X′ agrees
well with that measured in the HREELS and He-scattering experiments.

3.3.3. Along the0–X direction. The recent HREELS measurements [17, 18] have reported
five surface modes at theX point. Modes at 8.6, 10.5, 14.8 and 21.5 meV lie in the bulk
acoustic range, and the mode at 34.8 meV lies near the top of the projected bulk spectrum.
The first three of these modes have been labelled in the literature as RW (Rayleigh wave),
A1 and A2, respectively, and can be compared with the modes at 8.73, 9.95 and 13.86 meV
in our work. The experimental mode at 21.5 meV can be compared with the mode at
21.01 meV in our work. Finally, the experimentally observed Fuchs–Kliewer branch mode
at 34.8 meV can be compared with our calculation of the mode at 33.23 meV.

As can be seen from table 3, our surface frequencies atX agree well with those given
in the ab initio works of Schmidtet al [26] and Fritschet al [25]. However, there is
some difference between various theoretical results for the RW wave. Firstly, theab initio
work by Di Feliceet al [24] places it at 4.4 meV which is too low compared with our and
other theoretical work. Secondly, while Fritschet al find that this mode is due to in-phase
vibrations of the top-layer As and second-layer Ga atoms, we find that this is due to in-
phase vibrations of top-layer Ga and second-layer As atoms along the surface normal. The
work of Schmidt, on the other hand, predicts this mode to possess 68% of its character as
sagittal (SG) polarization, while we predict it to be almost totally polarized as SG. There is
good agreement among all theoretical studies and the HREELS measurement for the energy
location and polarization behaviour of the A1 mode. The mode at 13.45 meV agrees well
with the theoretical work of Schmidtet al and of Fritschet al with respect to its energy
location and polarization behaviour: it corresponds to the displacements the top-layer Ga
atoms along the zigzag chain direction and the top-layer As atoms perpendicular to the chain
direction. Next we predict the A2 mode to lie at 13.86 meV, in good agreement with other
theoretical calculations and the HREELS measurements. As shown here and by Schmidtet
al, this mode has almost equal amplitudes of SG and SH polarization components. There
is also good agreement between our results and that due to Schmidtet al for three modes
between 20 and 30 meV. Finally, in agreement with the work of Fritschet al, we find that
the highest surface phonon mode atX has a displacement pattern which is dominated by an
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opposing motion of the top-layer Ga atoms and the second-layer As atoms perpendicular to
the chain direction. Our work suggests that for this mode there is also a large contribution
from the Ga and As atoms in the third layer. This is similar to the displacement pattern of
the Fuchs–Kliewer phonon at0. The calculated SG and SH components of the polarization
amplitude for this mode atX are in the same proportion as found by Schmidtet al. The
calculated dispersion of the Rayleigh mode along0–X agrees well with that measured in
the HREELS and He-scattering experiments.

3.3.4. Along the0–M direction. The calculated dispersion of the Rayleigh mode along0–
M agrees well with the He-scattering measurements. Also, near theM point the frequencies
7.8 and 14.5 meV obtained from He-scattering experiments are reproduced by our theoretical
calculations.

4. Conclusions

In this paper we have calculated the phonon dispersion curves for the GaAs(110) surface by
employing the phenomenological bond charge model. We have shown that the results from
this method agree well with existingab initio theoretical calculations and experiments. We
have provided a more detailed account of surface vibrations than is currently available from
experiments or other theoretical calculations, including the work of Santiniet al who also
used the bond charge model. We have found that vibrational frequencies corresponding
to the relaxed surface geometry are quite different from those on the ideally terminated
surface. In particular, we have noted that a few surface modes are very sensitive to surface
relaxation. We have identified energy location and polarization characteristics of various
phonon modes at0, X, X′ and M, and along the symmetry directions0–X, 0–X′ and0–
M. Our results agree well with recent HREELS and He-inelastic-scattering measurements
for the dispersion of the Rayleigh mode along these symmetry directions, and also for the
modes A1 and A2 at the zone boundaries (X and X′). The agreement between theory and
experiment for the dispersion of the Fuchs–Kliewer branch at the top of the bulk spectrum
is not as good as is found for the Rayleigh mode, but is acceptable within the error margins
inherent to the experimental and theoretical studies. Our studies therefore commend the
adiabatic bond charge model as a reliable theoretical technique for the description of the
surface dynamics of GaAs(110).
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